skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: ". Milan Shetti, Bingzhe Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hybrid storage systems are prevalent in most large scale enterprise storage systems since they balance storage performance, storage capacity and cost. The goal of such systems is to serve the majority of the I/O requests from high-performance devices and store less frequently used data in low-performance devices. A large data migration volume between tiers can cause a huge overhead in practical hybrid storage systems. Therefore, how to balance the trade-off between the migration cost and potential performance gain is a challenging and critical issue in hybrid storage systems. In this paper, we focused on the data migration problem of hybrid storage systems with two classes of storage devices. A machine learning-based migration algorithm called K-Means assisted Support Vector Machine (K-SVM) migration algorithm is proposed. This algorithm is capable of more precisely classifying and efficiently migrating data between performance and capacity tiers. Moreover, this KSVM migration algorithm involves a K-Means clustering algorithm to dynamically select a proper training dataset such that the proposed algorithm can significantly reduce the volume of migrating data. Finally, the real implementation results indicate that the ML-based algorithm reduces the migration data volume by about 40% and achieves 70% lower latency than other algorithms. 
    more » « less
  2. Hybrid storage systems are prevalent in most largescale enterprise storage systems since they balance storage performance, storage capacity and cost. The goal of such systems is to serve the majority of the I/O requests from high-performance devices and store less frequently used data in low-performance devices. A large data migration volume between tiers can cause a huge overhead in practical hybrid storage systems. Therefore, how to balance the trade-off between the migration cost and potential performance gain is a challenging and critical issue in hybrid storage systems. In this paper, we focused on the data migration problem of hybrid storage systems with two classes of storage devices. A machine learning-based migration algorithm called K-Means assisted Support Vector Machine (K-SVM) migration algorithm is proposed. This algorithm is capable of more precisely classifying and efficiently migrating data between performance and capacity tiers. Moreover, this KSVM migration algorithm involves a K-Means clustering algorithm to dynamically select a proper training dataset such that the proposed algorithm can significantly reduce the volume of migrating data. Finally, the real implementation results indicate that the ML-based algorithm reduces the migration data volume by about 40% and achieves 70% lower latency than other algorithms. 
    more » « less
  3. IEEE (Ed.)
    A hybrid cloud that combines both public and private clouds is becoming more and more popular due to the advantages of improved security, scalability, and guaranteed SLA (Service-Level Agreement) at a lower cost than a separate private or public cloud. The existing studies rarely consider VM migrations in a hybrid cloud environment with dynamically changed VM workloads. From an enterprise’s perspective, these migrations are necessary to minimize the cost of utilizing public clouds and guarantee SLAs of VMs in a hybrid cloud environment. In this paper, we propose an elastic VM allocation and migration algorithm for a hybrid cloud, called E-VM, to fully utilize the resources in a private cloud and to minimize the cost of using a public cloud while guaranteeing the SLAs of all VMs. The E-VM considers the bi-direction migration between private and public clouds. Two components, VM-predictor and VM-selector, are designed and implemented in E-VM to determine if a migration has to be triggered between private and public clouds and which VMs will be migrated to the opposite cloud, respectively. Moreover, E-VM is designed based on the existing public cloud pricing models and can be easily adapted to any cloud service provider. According to simulator results based on a set of captured industrial VM traces/workloads and additional experiments directly on a real-world hybrid cloud, the proposed E-VM can significantly reduce the total cost of using the public cloud compared to the existing VM migration schemes. 
    more » « less